
An Algorithm for Optimal Partitioning of Data
on an Interval

Brad Jackson, Jeffrey D. Scargle, David Barnes, Sundararajan Arabhi, Alina Alt, Peter Gioumousis,

Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and Tun Tao Tsai

Manuscript received XXX, 2003. This work was supported by the NASA Applied Information Systems

Research Program, the Woodward Fund of San Jose State University, and the NASA Faculty Fellowship

Program at Ames Research Center and Dryden Flight Research Center.

B. Jackson is with the Department of Mathematics, San Jose State University, J. Scargle is with the

Space Science Division, NASA Ames Research Center. The other authors were participants in the Center

for Applied Mathematics and Computer Science program at San Jose State University.

Corresponding author:
Jeffrey D. Scargle, MS 245-3
Space Science Division
NASA Ames Research Center
Moffett Field, CA, 94035-1000
Telephone: 650 604 6330
Fax: 650 604 -6779
E-mail: Jeffrey.D.Scargle@nasa.gov

Subject headings:

signal detection, density estimation, optimization, Bayesian modeling, histograms, cluster analysis

EDICS: 1.STAT



1. Abstract

Many signal processing problems can be solved by maximizing the fitness of a segmented model

over all possible partitions of the data interval. This letter describes a simple but powerful algorithm that

searches the exponentially large space of partitions of N data points in time O
�
N 2 � . The algorithm is

guaranteed to find the exact global optimum, automatically determines the model order (the number of

segments), has a convenient real-time mode, can be extended to higher dimensional data spaces, and solves

a surprising variety of problems in signal detection and characterization, density estimation, cluster analysis

and classification.

2. Introduction: The Problem

A variety of signal processing and related problems can be viewed as the search for an optimal partition

of data given on a time interval I. For example, one may estimate a segmented model by maximizing some

measure of model fitness1 defined on partitions of I. Since the space of all partitions defined by a continuum

of subintervals is highly infinite, it is advantageous to discretize the interval. Often the data themselves,

Xn � n � 1 � 2 ��������� N � (1)

where N is the number of data points, naturally subdivide I into into connected subintervals – which we

call data cells. We avoid a specific definition of the data cells, because many different types are possible.

Common examples are counts in bins, measurements at a set of sample times (evenly spaced or not), and

event or point data. The underlying idea is that restricting consideration to the finite space of partitions

whose elements are sets of data cells will result in no significant loss of information or of resolution in the

independent variable.

A partition P of an interval I is a set of M blocks,

P
�
I � ��� Bm � m 	�

� � 
���� 1 � 2 ������� M � � (2)

where the blocks are sets of data cells defined by index sets � m:

Bm ��� Xn � n 	�� m � (3)

satisfying the usual conditions, �
m

Bm � I and Bm � Bm � � /0 if m �� m � . Partitions will be denoted in boldface,

and refer to the interval I unless otherwise stated. Define P � as the (finite) set of all possible partitions of I

1This concept goes by many names, including goodness of fit, loss, penalty, objective function, risk etc.,

but here we use the term cost.

2



into connected blocks. Take as given an additive cost function that assigns a value to any partition P 	 P � in

the form

V
�
P � �

M

∑
m � 1

g
�
Bm

� � (4)

where g
�
Bm

� is the cost of block Bm. Computationally, the data cells must be represented by a data structure

that contains sufficient statistics for the model – i.e. all information necessary to determine g for any block

[see e.g. Eq. (11)].

We exhibit an efficient O
�
N2 � dynamic programming algorithm that finds an optimal partition

Pmax 	 P � : V
�
Pmax ��� V

�
P � for all partitions P 	 P � .

Scargle [5] proposed two greedy iterative algorithms for finding near-optimal partitions: one top-down

(optimally divide I into two parts; recursively do the same to each such part) the other bottom-up (merge

adjacent data cells). In both cases Bayesian model comparison provides effective fitness functions and

halting criteria, implementing an O
�
N2 � procedure for data spaces of 1, 2 and higher dimensions – hence

the term Bayesian Blocks [5]. But in practice these greedy algorithms often find significantly suboptimal

partitions, motivating the development reported here.

3. Dynamic Programming: Finding Optimal Partitions

We describe an O
�
N2 � algorithm that is guaranteed to solve the above problem by finding an exact

global optimum, for any cost function V that is additive in the sense of Eq. (4). There is a large (2N � 1) but

finite number of partitions in P � . Dynamic programming [2] is an intelligent method of searching this space

of all possible solutions of our optimization problem. It can be applied whenever the principle of optimality

– in this context, any subpartition of an optimal partition is optimal – holds.

Theorem 1 (Principle of Optimality) Let Pmax be an optimal partition of I and P1 ��� Bm � m 	 a � be any

subset of the blocks of Pmax. Then P1 is an optimal partition of the part of I it covers, namely I1 � �
m � a

Bm.

Intuitively, this result follows from the fact that a better subpartition could be used to construct a

partition of the full interval better than the optimal one – a clear contradiction. The proof relies on the fact

that the block-additivity of the cost function implies that it is also additive on subpartitions. To see this,

divide partition P into any two disjoint parts, P1 ��� Bm � m 	 a � and P2 ��� Bm � m 	 b � , with P1 � P2 � P

and a � b ��
 . Then the additivity of V yields

V
�
P � �

M

∑
m � 1

g
�
Bm

�

� ∑
m � a

g
�
Bm

� � ∑
m � b

g
�
Bm

�

3



� V
�
P1

�!� V
�
P2

� � (5)

Proof 1: As above, denote by P2 the subpartition of Pmax, consisting of the blocks � Bm � m 	"
$# a � in

Pmax that are not in P1. Let P3 be any other partition of I1. Since Pmax is an optimal partition of I and

P3 % P2 is also a partition of I it follows that V
�
Pmax � � V

�
P1

�!� V
�
P2

��� V
�
P3 % P2

� � V
�
P3

�!� V
�
P2

� so

V
�
P1

�&� V
�
P3

� � Thus P1 is an optimal partition of I1.

Dynamic programming is a recursive procedure that can be used to efficiently find the solution to

many kinds of combinatorial optimization problems. Our algorithm derives the optimal partition of the first

n � 1 data points using that of the first n. At each iteration we must consider all possible starting locations

j, 1 ' j ' n of the last block of the optimal partition. For each putative j the cost function is – by the

principle of optimality – the cost of the optimal subpartition prior to j plus the cost of the last block itself.

The former was stored at previous iterations, and the latter is a simple evaluation of V . The desired new

optimal partition corresponds to the maximum over all j.

More precisely, define opt
�
n � to be the value of the cost function of the optimal partition Pmax

n of the

first n cells of I, for 1 ' n ' N. The following dynamic programming algorithm finds the optimal partition

Pmax
N :

1. Define opt
�
0 � � 0

2. Given that opt
�
j � has been determined for j � 0 � 1 �������(� n:

) Define end
�
j � n � 1 � � g

�
B j * n + 1

� ; B j * n + 1 is the union of cells j � j � 1 �������,� n � 1

) Then compute

opt
�
n � 1 � � Max

j
� opt

�
j # 1 �!� end

�
j � n � 1 � � � (6)

for j � 1 � 2 ��������� n � 1.

) The value of j where this maximum occurs is stored as lastchange
�
n � 1 � .

3. Repeat 2 until n � 1 � N, when opt
�
N � , the optimal partition cost for all N cells, has been obtained.

4. Backtrack using the lastchange vector to identify the start points of individual blocks of the optimal

partition Pmax in the following way. Let n1 � lastchange
�
N � � n2 � lastchange

�
n1 # 1 � , etc. Then

the last block in Pmax contains cells n1 � n1
� 1 �������(� N, the next-to-last block in Pmax contains cells

n2 � n2
� 1 �������-� n1 # 1 � and so on.

Theorem 2 This deterministic O
�
N2 � dynamic programming algorithm finds the partition of I that

maximizes the (additive) cost function.

4



Proof 2: The proof is by mathematical induction. Clearly opt
�
1 � � Max � 0 � end

�
1 � 1 � �.� g

�
B1 * 1 � is the

cost of the only possible (and therefore optimal) partition of the set comprising the first cell. At iteration

n � 1, assume not only that we have found the optimum partition of Pmax
n , but also that for i � 1 � 2 �������(� n � we

have stored the corresponding cost for this and all previous iterations in the array opt
�
i � , and the index of the

cell beginning this partition’s last block in array lastchange
�
i � . Let F

�
j � � opt

�
j # 1 � � end

�
j � n � 1 � ; then

the principle of optimality shows that when j indexes the first cell of the last block of the desired partition

Pmax
n + 1 � F �

j � is the corresponding maximum cost. Further, for any j � F �
j � is the cost of a legitimate parition

of Pmax
n + 1 , namely that consisting of the optimal partition of the cells prior to j followed by the single block

B j * n + 1. These two facts combine to prove that the maximum of F
�
j � specified in Eq. (6) gives the desired

optimum partition at iteration n � 1. Identification of the corresponding optimal blocks – starting with the

last one and working backwards, as in part (4) of the algorithm – can be validated with straightforward

recursive application of the principle of optimality. Finally, since end
�
j � n � 1 � � g

�
B j * n + 1

� the algorithm

requires 1 � 2 � ����� � N � O
�
N2 � evaluations of the function g. It also requires O

�
N2 � additions and O

�
N2 �

comparisons in determining the maximums.

4. Applications

These results apply to any segmented modeling of 1-dimensional data. As a key density estimation

example, piecewise constant models yield histograms in which the bins are not constrained to be equal.

The number of bins and their sizes and locations are determined by the data. Further, almost all of the

results described here can be easily extended – almost without change – to data of higher dimensionality,

as will be described in future papers [4]. Cluster analysis, not usually considered for one-dimensional data,

can be effected as a post-processing of segmented models – piecing the blocks together into clusters – and

similarly with unsupervised classification and other data mining procedures.

But the following problem, relevant to any signal detection and charactarization problem with event

data, has been our primary application.

In many astronomical observations individual photons emitted by a source are detected. The data

stream consists of a list of the corresponding detection times, one for each photon. The astrophysical goal

is to detect and characterize the variations (if any) of the intensity of the source. For example, if there is a

significant outburst of radiation, when does it start and what is its intensity? Both of these questions can be

answered by finding the step function that best fits the data.

Here I is the time interval during which the source was observed. There is a point on I for each event,

marking the time that the photon was detected. Many methods of analyzing such data require binning of

5



the data. Usually the bins are taken be large enough so that they each contain enough photon counts to

provide a good statistical sample. This practice of binning event data throws away a considerable amount of

information and introduces a dependency of the results on the sizes and locations of the bins. Our method

does not require bins.

We start with the subdivision of the observation interval into data cells, as described above. For event

data, the midpoints between successive data points provide a suitable definition of the cell edges. This can

be thought of as a 1D Voronoi tessellation2 of the data, a view that extends naturally to higher dimensions.

Even though the reciprocal of the cell size is a useful estimate of the local density, one is not usually

satisfied with this representation. It comprises N blocks and is much too refined. It also reflects the noise

inherent in the data. Consider partitions P of I into blocks that are connected unions of these cells. For

any block Bm 	 P, we denote its length by am and the number of events in it by Nm. This representation is

conveniently plotted as a step function with M steps, the width of the mth step is am and the height of the

mth step is the corresponding event density Nm / am.

It is necessary to specify the fitness measure to be maximized in finding the optimal model. Many

such cost functions are possible, but we have found the Bayesian posterior for a segmented Poisson model

very useful in this and related contexts. That is, each block is modeled as a Poisson process with constant

intensity, yielding for the posterior block probability [5]:

Pr
�
Bm 0Dm

� � Γ
�
Nm

� 1 � Γ � am # Nm
� 1 �

Γ
�
am

� 2 � � (7)

where Γ is the standard gamma function. Dm represents the data in the block, expressed in terms of two

sufficient statistics am and Nm. The Poisson intensity parameter has been marginalized, using a flat prior. In

many applications am is an integer, so the corresponding factorial functions can be used.

The posterior probability of a given partition is the product of the posteriors over all the blocks in that

partition, since we assume the points in each interval are independent of each other. For a Poisson process

this holds if there are no correlations in the detections of the events. In practice, detectors have a small

dead time - that is, for a short time after detecting a photon no further events can be detected. But here we

neglect this effect. Thus the best (most likely) partition is one which maximizes

Pr
�
P 0D � �

M

∏
m � 1

Pr
�
Bm 0D � � (8)

where the product is taken over all the blocks in the partition. Equivalently we can maximize

Vevents �
M

∑
m � 1

1
logΓ

�
Nm

� 1 � � logΓ
�
am # Nm

� 1 � # logΓ
�
am

� 2 �32 � (9)

2The Voronoi tessellation divides a data space S into cells such that each point in S is assigned to the cell

containing the data point that it is closest to.

6



For binned data 5

Vbins �
M

∑
m � 1

1
logΓ

�
Nm

� 1 � # �
Nm

� 1 � log
�
am

� 1 �32 � (10)

For the model consisting of a signal with additive Gaussian noise, the data cell contains the measured value,

the time of measurement, and the standard deviation of the noise:

Xn ��� xn � tn � σn � n � 1 � 2 �������,� N � (11)

and for a flat (unnormalized) prior it is easy to derive the posterior:

Vnormal � ∑
k

1 # 1
2

log
�
ak
�!� � b2

k

4ak

� # ck
2 (12)

where

ak � 1
2 ∑

n

1
σ2

n
(13)

bk �4# ∑
n

xn

σ2
n

(14)

and

ck � 1
2 ∑

n

x2
n

σ2
n

(15)

To treat the the number of blocks as a nuisance parameter, we assign a geometric prior [3], which adds a

term proportional to the number of blocks into the final expression for V to be maximized.

Analysis of arrival times of photons detected from a gamma-ray burst observed by the NASA BATSE

instrument on the Compton Gamma-ray Observatory is shown in Figure 1. The only adjustable parameter –

from the the geometric prior described above – was chosen based on simulation studies on synthetic data

with properties similar to the BATSE data.

As we have seen dynamic programming gives a good (polynomial) algorithm for finding an optimal

partition of data on an interval for any cost function V satisfying the additive property [see Eq.(4)].

Ironically it has the same O
�
N2 � complexity as the greedy algorithm. Note that Vidal [6] gives an O

�
kN 2 �

dynamic programming algorithm for finding the optimal partition of an interval into k blocks, for a given k.

5. Conclusion

In comparing the use of our algorithm to detect and characterize clusters (collections of blocks) with

some of the standard clustering techniques [1], we note that our method inherently compares partitions that

have different numbers of blocks, so the number of blocks is automatically determined by the data. This is

to be contrasted with most standard clustering techniques, in which k, the fixed number of clusters must

be specified ahead of time. One often seeks to minimize the maximum diameter (defined as the maximum

7



distance between any pair of points in the cluster) of the clusters, or to maximize the minimum separation

between the clusters. In dimension 1, there are well-known O
�
kN 2 � dynamic programming algorithms

for finding the best partitions into k clusters. For dimension 2 and higher it is known that these standard

problems are NP-complete. We don’t yet know if our problem is NP-complete in dimension 2 and higher.

In addition, considered as a density estimation or signal detection technique, our approach does

not introduce any explicit smoothing of the data. Structure on any time scale, no matter how short,

will be detected if it is supported by the data. While the parameter in the geometric prior discussed

above contols to some extent the number of blocks – and thus affects the roughness of the optimized

model – it is not explicitly a smoothing parameter. Another feature is that the incremental way the

algorithm operates on the data makes a real-time mode trivial to implement. This mode has found

to be very useful in the rapid detection of changepoints in a data stream. And since opt
�
i � 1 � is

calculated from opt
�
j � � j � 1 � 2 �������,� i � some of the necessary calculations can be performed as the data

are still being collected. Also it is easy to modify the dynamic programming to yield the optimal

partition with blocks of a minimum size (each block contains at least d data points, for a given

positive integer d). These and other features are described in more detail at an algorithm repository at:

http://trotsky.arc.nasa.gov/˜pgazis/CodeArchiveServer/CodeArchiveServer.html

8



REFERENCES

[1] C. J. Alpert and A. B. Kahng , Splitting Orderings into Multi-way Partitionings to Minimize the
Maximum Diameter, Journal of Classification, (14), 1997, pp. 51-74.

[2] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.

[3] M. A. Coram Nonparametric Bayesian Classification, Ph.D. thesis, Department of Statistics, Stanford
University, 2002.

[4] B. Jackson, J. Scargle, et. al., Optimal Partitions of Data in Higher Dimensions, in preparation.

[5] J. Scargle, Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, A New Method to Analyze
Structure in Photon Counting Data, The Astrophysical Journal, (504), 1998, pp. 405-418.

[6] R. Vidal, Optimal Partition of an Interval, Applied Simulated Annealing, Springer-Verlag, New York,
1993, pp. 291-314.

This manuscript was prepared with the AAS LATEX macros v4.0.

9



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
ve

n
t 

R
at

e

 t(sec)

Fig. 1.— Bayesian Block analysis of event data, namely arrival times of 25,213 gamma-ray photons detected

from gamma-ray burst Tr0551 by the BATSE instrument on the NASA Compton Gamma-ray Observatory.

Event rate (counts per unit time) is plotted as a function of time, in seconds. The thin line shows the counts

in evenly spaced bins of width .002 sec, chosen simply to display the raw data. The solid lines show the

optimal partition into blocks as determined with our algorithm.

10


